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Abstract

This paper presents a software engineering
perspective to designing and building fault protec-
tion monitor software for spacecraft. We capitalize
on fault protection ideas inhcritted  from Cassini [1]
and emphasize streamlining the design and devel-
opment process on the basis of separating domain-
specific monitor specifications from architectural
software issues. We emphasize the view of fault
protection monitoring as a functional transforma-
tion of raw sensor data for feature extraction and
symptom detection. Combined with automatic code
generation from specification, the functional view-
point of monitoring can be seen as one application
of the cleanroom software engineering methodol-
ogy [2].

Introduction
Sensor monitoring is an integral part of the

fault-protection architecture of a spacecraft.
Monitors extract features from raw sensor data to
detect symptoms of nominal and abnormal behav-
ior. Even though symptom detection is hardware
specific, the overall fault protection architecture
accommodates a view of monitoring as a data-flow
process operating functional transformations of
monitor state and sensor data.
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Figure 1: Fault protection architecture

Given sensor data from hardware managers, x,
monitors extract salient features, y, used for de-
tecting and reporting symptoms, z, to the fault
protection system for diagnosis and recovery [1,4].
Local symptom detection involves updating local
state information, s, from feature data, y, and prior
state information.

Several generations of spacecraft had severely
limited computing resources and consequently
could use nothing but basic monitoring techniques
such as limit sensing. Faster processors and larger
memory can accommodate recent advances in
signal processing and fault protection technology.
However, sensor monitoring is more than just
feature extraction and symptom detection: a
spacecraft imposes software architecture standards
that all flight software components must follow.
This aspect creates several dilemmas: While
standardizing software architecture is important, it
should not entail freezing monitor design for such
designs often need revisions during integration and
test. Similarly, accommodating changes due exter-
nal factors such as hardware revisions should not
result re-verifying  software architecture compli-
ance.

We approach the problem of designing soft-
ware monitors from a methodological perspective
where sensor monitoring algorithms can be de-
fined, evaluated and selected independently of the
specific software architecture standards imposed
by the spacecraft design. Our goal is to make basic
monitoring capability inexpensive so that the
scope of fault protection monitoring is entirely
driven from a system engineering analysis instead
of being overly constrained from software devel-
opment concerns. To do so, we first specify each
monitor as a dataflow schema of feature extraction
and symptom detection operators for reliably
detecting and discriminating between nominal and
abnormal behavior. Second, we describe all as-
pects of the software architecture (Figure 2) for



sensor monitoring in domain-specific software
templates used as patterns for a code generator.
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Figure 2: Software Architecture Elements

Finally, all symptom detection algorithms are
specified as restricted Harel state-transition dia-
g-rams reusable throughout the spacecraft. The
goals of this methodology are to reduce the occur-
rence of errors through automation, reuse symp-
tom-detection algorithms, and streamline fault
protection monitor design and test. This methodol-
ogy is applied to design and build the fault protec-
tion monitors of the Deep Space 1 (1> S-1 ) space-
craft.

2 Specification-driven monitors
Designing and building fault-protection

monitor software for a spacecraft is challenging.
Reliability and robustness concerns suggest on one
hand freezing specifications, developing the
monitors once and testing them thoroughly. On the
other hand, the knowledge about possible failures
evolves throughout the project thereby changing
fault-protection requirements and consequently the
fault-protection monitors. Clearly, fault-protection
monitors must be designed, built and tested incre-
mentally. An issue is how to accommodate the
changes mandated by this incremental approach so
that monotonic progress towards the ultimate
objectives of reliability and robustness is achieved.
Our approach is inspired from the Cleanroom
Process Model of software engineering [2] based
on evolutionary prototyping and streamlined
development from specification to testing [3].
First, we limited the scope of a specification to
describe what dataflow processing work must be
done in a monitor (Sec. 3). This dataflow specifi-
cation language works in concert with software

architecture templates to describe how a monitor
interfaces with the rest of the spacecraft software
to achieve its purpose (Sec. 4). We further ex-
ploited the separation between software architec-
ture and domain-specific functionality to focus on
testing the latter independently from the former
and to prevent domain-independent architecture
issues from affecting domain-dependent function-
ality (Sec. 5).

3 Feature extraction & symptom
detection

From a high-level perspective, a monitor
specification describes the class of nominal and
anomalous symptoms relevant for fault protection.
From a low-level perspective, a monitor specifica-
tion describes the data-flow transformations for
extracting specific features from raw sensor data
and detecting symptoms from such features. It is
widely accepted that a careful choice of domain-
specific features can greatly simplify the problem
of symptom detection [4].

Feature extraction is a domain-specific data
transformation function with little potential for
reuse. Symptom detection involves a decision-
making criterion that may be subject to change,
either because of important hardware changes or
baseline changes in fault-protection strategy. This
function can be already performed in a hardware
device or its associated manager in which case
there is no additional symptom detection logic.
When symptom detection logic is necessary, we
define it as a Harel state chart with the restriction
that side effects are restricted to modifying the
state information associated to that symptom
detection algorithm. This restriction allows us to
mathematically analyze a state chart diagram as a
deterministic function of the data inputs and of the
associated state information.

For example, Figure 3 shows the attitude con-
trol error monitor used on DS - 1. This monitor
tracks the controller performance in the phase
plane of the error and rate of error. Traditional
control error monitors prescribe a maximum
tolerated error (i.e., ~r,i. <,< t.nUX ). This design,

inherited from Cassini,  is intended to tolerate large
errors as long as the controller is working to
reduce them (i.e., e+ A&/ Af-or e- AAe/h+ ). T h e
slope of the decision line is proportional to the
tolerated time the controller has to reduce an
abnormally large error to within the nominal
range. This symptom detection logic is inherited
from the Cassini  spacecraft with the simplification
for DS- 1 that the symptom detection threshold



logic triggers only on thejcomponent  of the phase
plane as opposed to both for Cassini.
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Figure 3: Control error monitor for DS-1.

The specification shown in Figure 3 states
that, for each of the three spacecraft axes, the
phase plane of the error and rate of error is rotated
and that a rninimumdrnaximum threshold symptom
detector is applied to each axis of the rotated phase
plane. The outputs of the threshold detectors are
combined to form the symptom detection message
reported to the fault protection engine. This speci-
fication is written in a custom dataflow language
as described below. Parameters are updated from
ground & flight software modules.

begin parameters
# threshold = deadband  + delta
double delta_x  = 0.005
double delta_y  = 0.010
double delta_z.  = 0,005
# Tolerated time outside deadbands  implies slope of g axis
double tolemted_tin~e = 3.0
# [klay  time before enforcing a tighter threshold.
int transition_time = 60
# Standard monitor tuning parameters
int confidence = 5
int persistence = 3
int decay= 5
end p~rarneters

Elements are parameters not visible to ground.
They are locally updated by assignment.

begin elements
# These time-delay counters hold the number of
# periodic tick remaining before a tighter
# dcadband  will be honored.
int delay_x = O
int delay_y = 0
int delay_z = O
# Ikadbands  from the attitude con~rol module (ACM)
double deadband_x  = O
double deadband_y  = O
double deadband_z  = O
end elements

Components are instances of Hare] state tran-
sition charts. Each chart supports a uniform set of
operations for updates, reset, parameter change,
and event-driven telemetry generation & reporting
as well as telemetry summarization. Each thresh-
old component is specified in tertns a rnin/max
range and generic confidence, persistence and
decay parameters for the symptom detection logic.
Confidence and persistence define how accumula-

tion of evidence is necessary for  nominal  and
abnormal symptom detection respectively. Decay
defines a mechanism for aging and eventually
ignoring historical data.

begin colnponents
# I st component of phase plane: error(x), rate_error(x)
threshold f_x( -(deadband_x+delta.  x), deadband_x+delta_x,

confidence, persistence, decay)
# Ist component of phase plane: error(y), rate_error(y)
threshold f_y(-(defidband_  y+delta_y),  deadband_y+delta_y,

confidence, persistence, decay)
# I st conlponent  of phase plane: error(z), rate_error(z)
threshold f_z(-(deadband_z+  delta_ z), deadband_z+delta_z,

confidence, persistence, decay)
end components

Updates constitute the functional description
of feature extraction and symptom detection. Note
that messages are reported only if any of the
components updated so far necessitate doing so.
Also shown is the mechanism for delaying the
tightening of ACS deadbands in order to reduce
false alarms during the transition.

begin updates
function nlon_acs_update  ( double crror[3], double error_rate[3]  )

updates e_edot_2_f(error[ Ol, error_rate[Ol)  -> f_x
updates e_edot_2_f(error[ 1], error_ rate[  I ]) -> f_y
updates e_edot_2_f(error[  2], error.. mte[2])  -> f_z
reports MON_ACS_A~_ERROR  ( rnon_acs_att_error_t  error )
as error. x <- f_x; error.y  <- f_y; error.z  <- f_z

function nlon_acs_deadbwtds  ( double deadbands[3]  )
if (deadbands[O]  > deadband_x)

then change_  pamnls  deadbands[(l]  -> f_x
else updates deIiry_x = transition..time
and  updates deadbimd_x  = dea(fbmds[O]

if (deadbands[  1 ] > dcadband_y)
then change_  paranls  deadbands[y]  -> f_y
else updates delay_y = transition..time
and updates deadband_y  = deadbands[  1]

if (deadbands[2]  > deadband_z)
then chwsge_paran~s  deadbands[z]  -> f_z
else updates delay_z = transition_ time
and updates  deadband_z  = deadbands[2]

reports MO N_ ACS_A’fT_ERROR  if changed && needed

for_each  ticLpcriod  do
change_  paranls  -> f_x if (delay_x  > O) && (--delay_x  == O)
change_  paranls  -> f_y if (delay_y > O) && (--delay_y == O)
change_paralns  -> f_z if (delay_z  > O) && (--delay_z  == O)
report MON_ACS_AT-r_ERROR  if changed && needed

cnd updotes
# - ‘m’ is the slope of tbe g-axis (perpendicular to the f-axis).
# - (emor,error_rate)  is point P in the phase-ptanc coordinates.
# - Line PG is parallel to g-axis and passes through P.
# - (ex,ey) is intersection of tine PG with f-axis.
# - Magntiude  of f of intersection is sqrt(exA2  + eyA2)
# - (0.yi) is intersection of line PG with y-axis;
# . sign of yi gives sign of fi.
double e_edot_2_f(double  error, double error_ rate)
(
double m = - 1,0/  ltIon_acs_instarlce.  paran~eters,tolerated_  tirlIe;
double ex = ((m * error) - error_ rate) / (rn + (t .Ohn));
double ey = - ex / m;
rfouble  f = sqrt( ex * cx + ey * ey),
double yi = crror_mte  - m * error;
return (yi >= O) ‘? f: -f:

I



4 Software architecture conccrns
A monitor specification as earlier described

does not describe neither the mechanistic means
for feeding raw sensor data to the feature extrac-
tion algorithms nor the reporting mechanism for
sending symptom reports to the spacecraft fault
protection engine. These aspects of monitoring are
part of the spacecraft software architecture and
design philosophy. Following the cleanroom
approach, we isolate all symptom detection algo-
rithms into design-once; reuse-everywhere Harel
State charts and group all other software aspects of
monitors into architecture-specific templates. The
decoupling among architecture concerns, symptom
detection and domain knowledge provides a sound
basis for reuse and associated code generation
techniques.

4.1 Code generation for state charts

We use Integrated Systems’ Better State Pro
for designing state chart diagrams for symptom
detection. Better State’s code generator produces
the C-based flight software as well as Java ver-
sions used here for building web-hosted standa-
lone testbeds of each symptom detection algo-
rithm. The web versions have been particularly
useful for a comparative and validation study of
the monitoring techniques used on the Deep-Space
1 and Cassini  spacecraft [5].

Without a state chart code generator, the qual-
ity of the symptom detection algorithms would
clearly be subject to the quality of the code hand-
produced. An automatic code-generation capabil-
ity helps eliminates a large class of human-induced
errors in flight software. However, the cleanroom
approach could be pushed a step further to elinli  -
nate errors at the level  of state charts thereby
strengthening even more the quality of the result-
ing flight software. Since symptom detection
algorithms must follow specific conventions for
data processing and symptom reporting, we can
already state several properties that all state charts
representing such algorithms must meet.!!C @

Figure 4: Limitations of State Charts.

For example, Figure 4 (left) shows a state
chart with two design errors: 1) if x=O, then no

transition is made, and 2) there is no terminal state
following the transition to S3 so the state machine
is stuck in S3. Current code generation techniques
use a state vector to represent the progress of the
computation through state transitions. This tech-
nique is adequate for arbitrary state charts; how-
ever, it is too general for state charts that are
equivalent to pure functions of state (right). For
example, the explicit state-based representation
used in the generated code could be eliminated
entirely by calculating, at generation time, the
functional composition of the actions and tests of
the finite set of paths through the state chart.
Similarly, the functions and structure of the state
chart could be exploited for test generation and
analysis purposes much like it is done in VLS1
chip design.

4.2 Code generation for specifications

This code generator started as a much less am-

bitious effort to save manual software develop-
ment. The importance of the generator rapidly
grew to a much more comprehensive role once the
cleanroom process benefits of increased produc-
tivity and reduced development costs far out-
weighed the development of the generator itself.

The separation of software architecture design
and domain-specific monitor specification allows
us to decouple the schedules and workforce neces-
sary to handle design and development issues
about software architecture on one hand and fault
protection on the other; both of which independ-
ently affect how monitor specifications are writ-
ten. In practice, software architecture matters
affect fault protection issues and vice versa. Re-
solving such issues pertains to spacecraft design,
which is beyond the scope of this paper. However,
telemetry is one area where this interdependence is
not resolved by design but still persists until late in
integration and test.

A spacecraft requires several levels of teleme-
try granularity to provide ground operators the
flexibility of adjusting the level of spacecraft
visibility to their needs. The lowest level of insight
comes from raw sensor data fed to the monitors.
Since ground operators need the flexibility to
change which monitor channels will be scrutinized
for anomaly analysis, all monitor input channels
are fitted with input ring buffers. The signature of
an anomaly then dictates which subset of the ring
buffers will be relevant for ground analysis and
therefore must be downlinked via recorded te-
lemetry. To accommodate fault protection changes
without software updates, we encoded in paranlet-
ric form all domain-specific decisions about



monitor telemetry generation and recording. That
is, (he software templates for code generation
de te rmine  where parametric control of telemetry

generation and recording is applicable while the
monitor specification implicitly defines the
domain-specific nature of that telemetry.

In the absence of failures, monitor telemetry
can be generated either in a fixed or variable
(event-driven) format. For DS- 1, fixed telemetry
packets summarize the monitor activity since the
last ground communication pass while event-
driven telemetry supports ground testing and real-
time spacecraft operation. The architectural split
between event-driven and packetized  telemetry
stems from our experience in unit testing and
behavior reconstruction as described next.

5 Unit testing & reconstruction
The unit testing of the monitor software has

been performed on Unix workstations to leverage
the rich development tools available. For example,
a logging mechanism is added to the software
architecture template files to generate a record of
just enough monitor activity to have full visibility
into all of the internal decision-making pertaining
to symptom detection. Since a real-time testbed is
practically inadequate for analyzing the individual
behavior of monitors and of other tasks, we have
extended the logging capability to allow the full
behavior reconstruction of the monitors outside the
testbed. This is achieved by recording the input
stimuli seen by the monitors in the testbed. Then, a
test driver emulates the testbed interfaces the
monitors have and replays the recorded stimuli to
reproduce the same behavior that occurred in the
testbed.

This simple technique has proven to be quite
useful for the detailed analysis of integration
problems between monitors and other software
modules such as hardware simulators, device
managers and fault protection software. In prac-
tice, behavior reconstruction helps us reduce
integration problems to either an incorrect monitor
specification or a software issue outside the
monitors. ] Behavior reconstruction is typically
seen as a helpful technique for integration. We
have extended this technique to evaluate designs
and solutions for tackling event-driven telemetry
generation as well as interface verification.

Event-driven telemetry provides visibility into
the activities of the spacecraft for the purpose of

1 “1’his assumes that 1 ) the monitor software archi-
tecture isconsistcnt with that designed for the spacecraft
and that 2) the software tcrnplatcs  have been validated
ilccordingly prior to integration.

ground-bilsed  testing and interaction with the
spacecraft. Since there is not enough bandwidth to
instrument all sensor inputs, some summarization
is necessary to fit within the available bandwidth
and to convey the essential information. To avoid
introducing errors in computing summaries, we
rationalize how this process must be done on the
basis of the monitor specification itself. Each
symptom detection component (e.g., a threshold)
has several internal logical states which remain
unreported (e.g., not enough confidence in nomi-
nal data or not a persistent abnormality) while
some are reported as nominal indicators (e.g.,
within range) and others as abnormal symptoms
(e.g., too high, too low). Thus, for each symptom
detection component, we associate a histogram
table summarizing the occurrence of states seen
and generate telemetry as follows: whenever a
component enters a reported statez,  the histogram
table is examined and all non-zero entries are
reported in the real-time telemetry stream. This
approach provides the starting point to perform a
temporal segmentation of the raw sensor data in
terms of intervals corresponding to nominal,
abnormal and unknown behavior. These interval
labels could be used to further bias the summari-
zation techniques for detecting underlying drifts
and evaluating the need of monitor parameter
corrections.

ln a spacecraft, the monitors are part of an
overall fault protection architecture such as [6]. To
eliminate software integration issues with high-
level  fault protection software, we need to validate
and verify the overall fault protection capability as
a functional unit, not as a set of modules each
requiring its own separate integration and tests. To
help address this problem, we use behavior recon-
struction to reasonably enumerate the possible
interactions originating from either monitors or
fault protection software. On the monitor side, we
generate behavior scripts to enumerate all possible
independent causes of symptom detection. For this
enumeration to be exhaustive, we use the monitor
specifications to trace and test all possible data
pathways from raw sensor data to any detected
symptom. On the fault protection side, we look at
all of the properties that the fault protection mod-
els are predicated on3 and examine all of the
possible ways in which these symptoms can be

2 Reported s[atcs affect upper li~ycrs  of fault protec-
tion and thcrcforc  must bc externally visible.

3 This analysis is greaffy simplified if high-level
faull protection is implcmcntecl with a rigorous thcorcti-
Ciil basis (e.g. [6]) as opposed to an ad-hoc design that
requires cxtcnsivc  ilnillySiS  for Validiltion.



generated from the monitors. While tbcse  two tests
arc empirical in nature, checking their mutual
consistency and exhaustiveness provides an im-
portant basis for validating the overall fault pro-
tection monitors and models.

6 Discussion

6.1 S t a t u s

The methodology presented here was created
as an on-going process improvement during the
course of designing and building the fault protec-
tion monitors for the Deep Space One spacecraft
scheduled for launch in July 1998 [7]. To date, we
have designed, built and unit tested 5 symptom
detection algorithms. There are 159 instances of
these detectors among the 11 monitor specifica-
tions written.

6.2 Clemroom  methodology

Initially, we saw monitor specifications and
specification-driven code generation as a basis for
accommodating the separate and conflicting
schedules of software development and of system-
level fault protection engineering. However,
monitor specifications soon became useful to
generate a whole class of related products from
test drivers to behavior reconstruction analyzers
and from ground monitor commands to downlink
monitor telemetry. This approach makes sense
because we precisely define the nature of the fault
protection monitors as a mathematical function
transforming raw sensor data into symptoms of
nominal and abnormal behavior. This formal view
of software echoes the emphasis of transforming
specifications into mathematical functions operat-
ing on data as advocated in cleanroom engineering
[8,2,3] and formal approaches to software design
and validation [9]. In fact, this functional view
provides the basis for establishing a simple archi-
tecture for monitoring (Figure 1 ) and, more in~-
portantly,  the rationale for incorporating in that
dataflow architecture all the software requirements
that fault protection must meet (e.g., initialization,
telemetry, commanding, etc.). Doing so simplifies
the process of validating fault protection monitors
in terms of domain-specific content and architec-
ture. The savings stem from factoring out the
domain-independent architectural aspects of
monitoring from the domain-specific details
captured in the monitor specifications. For exan~-
ple,  instead of following the statistical usage
testing approach advocated in [8], we use the
functional structure of the monitor specification to
first determine what are the independent functions

implied by the specification and, second, to [est
such functions thoroughly and exhaustively if
possible.

6.3 Future work

The methodology presented here represents
work in progress targeted at Deep Space One in
particular. Additional extensions are necessary to
automate the validation of software architecture
templates to make the method more accessible. We
have not addressed how to incorporate adaptive
monitoring techniques such as [ 10].
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